Winter School in Abstract Analysis 2023

Colorings of Abelian groups

Ido Feldman, Bar-Ilan University

Joint work with Assaf Rinot

31/1/2023

Additive Ramsey Theory

The S-principle

More colors, higher dimensions

Motivation

Let us recall Ramsey theorem from 1930. For every partition $[\mathbb{N}]^2 = A \uplus B$ there exists an infinite set $X \subseteq \mathbb{N}$ such that $[X]^2 \subseteq A$ or $[X]^2 \subseteq B$.

Motivation

Let us recall Ramsey theorem from 1930. For every partition $[\mathbb{N}]^2 = A \uplus B$ there exists an infinite set $X \subseteq \mathbb{N}$ such that $[X]^2 \subseteq A$ or $[X]^2 \subseteq B$.

But, Sierpiński proved in 1933 that if we consider the set \mathbb{R} , there exists a partition $[\mathbb{R}]^2 = A \uplus B$ such that, for every $X \subseteq \mathbb{R}$ uncountable, $[X]^2$ is not contained in A nor B.

Motivation

Let us recall Ramsey theorem from 1930. For every partition $[\mathbb{N}]^2 = A \uplus B$ there exists an infinite set $X \subseteq \mathbb{N}$ such that $[X]^2 \subseteq A$ or $[X]^2 \subseteq B$.

But, Sierpiński proved in 1933 that if we consider the set \mathbb{R} , there exists a partition $[\mathbb{R}]^2 = A \uplus B$ such that, for every $X \subseteq \mathbb{R}$ uncountable, $[X]^2$ is not contained in A nor B.

But, $\mathbb N$ and $\mathbb R$ are also Abelian semi-groups. What if we take into consideration the algebraic structure on those sets?

Historical Background

- Hindman's proved in 1974 that considering (N, +) for every partition into two cells N = A ⊎ B there exists an infinite set X ⊆ N such that, the set of all finite sums of X (FS(X)) is contained in either A or B.
- On the other hand, Komjáth proved in 2016 that (ℝ, +) admits the opposite property. Namely, there exists a partition [ℝ]² = A ⊎ B such that, for every uncountable set X ⊆ ℝ the set of all the sums of two elements from X (FS₂(X)) is not contained in A nor B.

Generalization

Consider the following "Ramsey-type" problem: For $\theta \leq \lambda \leq \kappa$ infinite cardinals. Given an Abelian (semi) group (G, +) of size κ , for all colorings $c : G \rightarrow \theta$, there exists a set $X \subseteq G$ of size λ such that the set of all finite sums of elements from X is monochromatic.

Generalization

Consider the following "Ramsey-type" problem: For $\theta \leq \lambda \leq \kappa$ infinite cardinals. Given an Abelian (semi) group (G, +) of size κ , for all colorings $c : G \rightarrow \theta$, there exists a set $X \subseteq G$ of size λ such that the set of all finite sums of elements from X is monochromatic.

We shall abbreviate this sentence by:

 $G o (\lambda)_{\theta}^{\mathsf{FS}}$

Generalization

Consider the following "Ramsey-type" problem: For $\theta \le \lambda \le \kappa$ infinite cardinals. Given an Abelian (semi) group (G, +) of size κ , for all colorings $c : G \to \theta$, there exists a set $X \subseteq G$ of size λ such that the set of all finite sums of elements from X is monochromatic.

We shall abbreviate this sentence by:

 $G o (\lambda)_{\theta}^{\mathsf{FS}}$

and if we restrict ourselves only to sums of two elements,

$$G o (\lambda)_{\theta}^{\mathsf{FS}_2}.$$

Main result

Theorem (Special case)

Under \neg (CH). For every Abelian group of size \aleph_2 there exists a coloring $c : G \rightarrow \omega$ such that, for every subset X of G of size \aleph_1 and color $n < \omega$, we may find $x, y, z \in X$ for whom c(x + y + z) = n. i.e. $G \rightarrow [\omega_1]^{FS_3}_{\omega}$ for all Abelian groups G of size \aleph_2 .

Notation

We commence with brief recall of the "Classical Ramsey-theory" definitions.

Definition

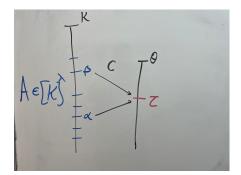
- ▶ $\kappa \nleftrightarrow [\lambda]_{\theta}^2$ asserts the existence of a coloring $c : [\kappa]^2 \to \theta$ such that, for every $A \in [\kappa]^{\lambda}$, $c''[A]^2 = \theta$;
- $\kappa \not\rightarrow [\lambda; \lambda]^2_{\theta}$ asserts the existence of a coloring $c : [\kappa]^2 \rightarrow \theta$ such that, for all $A, B \in [\kappa]^{\lambda}$, $c[A \circledast B] = \theta$.

Notation

We commence with brief recall of the "Classical Ramsey-theory" definitions.

Definition

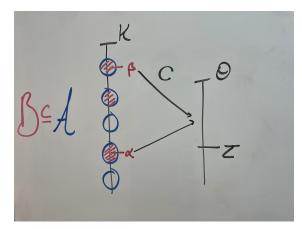
- ▶ $\kappa \nleftrightarrow [\lambda]_{\theta}^2$ asserts the existence of a coloring $c : [\kappa]^2 \to \theta$ such that, for every $A \in [\kappa]^{\lambda}$, $c''[A]^2 = \theta$;
- $\kappa \not\rightarrow [\lambda; \lambda]^2_{\theta}$ asserts the existence of a coloring $c : [\kappa]^2 \rightarrow \theta$ such that, for all $A, B \in [\kappa]^{\lambda}$, $c[A \circledast B] = \theta$.



Notation

Definition (Lambie-Hanson and Rinot, 2018)

 $U(\kappa, \mu, \theta, \chi)$ asserts the existence of a coloring $c : [\kappa]^2 \to \theta$ such that for every $\sigma < \chi$, every κ -sized pairwise disjoint subfamily $\mathcal{A} \subseteq [\kappa]^{\sigma}$, and every $\tau < \theta$, there exists $\mathcal{B} \in [\mathcal{A}]^{\mu}$ such that $\min(c[a \times b]) > \tau$ for all $(a, b) \in [\mathcal{B}]^2$.



Strong Failures

- Fernández-Bretón and Rinot's theorem from 2017 showed that G → [ω₁]^{FS}_ω for every uncountable Abelian group G. i.e. there exists a coloring c : G → ω such that for all X ⊆ G uncountable, c"FS(X) = ω.
- ▶ In the same paper, Fernández-Bretón and Rinot showed that for class many infinite cardinals λ , $G \rightarrow [\lambda]^{FS_2}_{\omega}$ holds for every abelian group G of size λ .

i.e. there exists a coloring $c : G \to \omega$ such that for all $X \subseteq G$ of size λ , c "FS₂(X) = ω .

Reduction

Fact (Representing Abelian groups as direct sum)

Suppose that G is an infinite Abelian group. Denote by κ the size of G. Then, there exists a sequence of countable divisible groups $\langle G_{\alpha} \mid \alpha < \kappa \rangle$ such that G embeds in $\bigoplus_{\alpha < \kappa} G_{\alpha}$.

Reduction

Fact (Representing Abelian groups as direct sum)

Suppose that G is an Abelian group of size κ . Then, there exists a sequence of countable divisible groups $\langle G_{\alpha} \mid \alpha < \kappa \rangle$ such that G embeds in $\bigoplus_{\alpha < \kappa} G_{\alpha}$.

Thus, if we replace every element $x \in G$ by supp(x) our problem may be translated as follows,

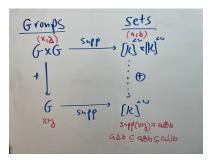
Definition (The S-principle)

 $S_n(\kappa, \lambda, \theta)$ asserts the existence of a coloring $f : [\kappa]^{<\omega} \to \theta$ such that, for every $\mathcal{X} \subseteq [\kappa]^{<\omega}$ of size λ and a color $\tau < \theta$, there exist $\{a_j \mid j < n\} \in [\mathcal{X}]^n$ such that, for every z satisfying

$$(a_0) riangle (\bigcup_{0 < j < n} a_j) \subseteq z \subseteq \bigcup_{j < n} a_j,$$

 $f(z) = \tau$.

Reduction



Definition (The S-principle)

 $S_n(\kappa, \lambda, \theta)$ asserts the existence of a coloring $f : [\kappa]^{<\omega} \to \theta$ such that, for every $\mathcal{X} \subseteq [\kappa]^{<\omega}$ of size λ and a color $\tau < \theta$, there exist $\{a_j \mid j < n\} \in [\mathcal{X}]^n$ such that, for every z satisfying

$$(a_0) riangle (\bigcup_{0 < j < n} a_j) \subseteq z \subseteq \bigcup_{j < n} a_j,$$

 $f(z) = \tau$.

Additive Ramsey Theory

The S-principle

More colors, higher dimensions

Background.

Lemma 1. (Fernández-Bretón-Rinot, 2017) If $S_n(\kappa, \lambda, \theta)$ holds, then $\kappa \not\rightarrow [\lambda]^n_{\theta}$.

Background.

- **Lemma 1.** (Fernández-Bretón-Rinot, 2017) If $S_n(\kappa, \lambda, \theta)$ holds, then $\kappa \not\rightarrow [\lambda]^n_{\theta}$.
- **Lemma 2.** (Fernández-Bretón-Rinot, 2017) For every successor $\kappa: \kappa \rightarrow [\kappa]^2_{\theta}$ holds iff $S_2(\kappa, \kappa, \theta)$ holds.

Extraction principle

Extraction principles are maps that help detecting Δ -systems within a big family of finite sets.

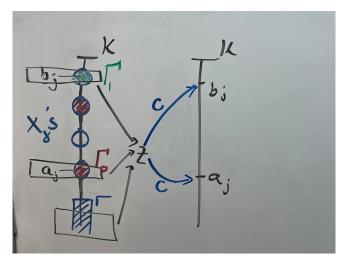
Definition

Extract₂($\kappa, \lambda, \mu, \chi$) asserts the existence of a map $e : [\kappa]^{<\omega} \to [\kappa]^2$ such that:

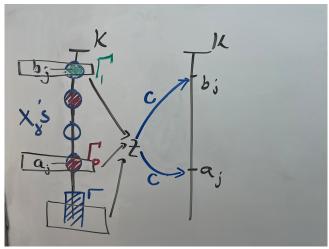
- 1. for every $z \in [\kappa]^{<\omega}$ of size \geq 2, $e(z) \in [z]^2$;
- for every sequence ⟨x_γ | γ < λ⟩ of subsets of κ, every r ∈ [κ]^{<μ}, and every nonzero σ < χ such that:
 1 for every (γ, γ') ∈ [λ]², x_γ ∩ x_{γ'} ⊆ r;
 2 for every γ < λ, y_γ := x_γ \ r has order-type σ,
 there exist j < σ and cofinal subsets Γ₀, Γ₁ of λ satisfying the following. For every (γ, γ') ∈ (Γ₀ ⊛ Γ₁) ∪ (Γ₁ ⊛ Γ₀), for every
 - $z \in [x_\gamma \cup x_{\gamma'}]^{<\omega}$ covering $\{y_\gamma(j), y_{\gamma'}(j)\}$, we have

$$e(z) = (y_{\gamma}(j), y_{\gamma'}(j)).$$

Extraction principle



Extraction principle



Example

Suppose that $U(\kappa, \kappa, \omega, \omega)$ holds for a regular uncountable κ and an infinite $\theta < \kappa$. Then, $Extract_2(\kappa, \kappa, \omega, \omega)$ holds.

Proof of the example

Fix $c : [\kappa]^2 \to \omega$ witnessing $U(\kappa, \kappa, \omega, \omega)$. Define a coloring $d : [\kappa]^{<\omega} \to \theta$, as follows. For $z \in [\kappa]^{<2}$, just let d(z) := (0, 1). Next, for $z \in [\kappa]^{<\omega}$ of size ≥ 2 , first let $\langle \alpha_i \mid i < |z| \rangle$ denote the increasing enumeration of z. Then set

$$j_z := \min\{j < |z|-1 \mid c(\alpha_j, \alpha_{j+1}) = \max\{c(\alpha_i, \alpha_{i+1}) \mid i < |z|-1\}\},$$

and let $d(z) := (\alpha_{j_z}, \alpha_{|z|}).$

Proof of the example

Fix $c : [\kappa]^2 \to \omega$ witnessing $U(\kappa, \kappa, \omega, \omega)$. Define a coloring $d : [\kappa]^{<\omega} \to \theta$, as follows. For $z \in [\kappa]^{<2}$, just let d(z) := (0, 1). Next, for $z \in [\kappa]^{<\omega}$ of size ≥ 2 , first let $\langle \alpha_i \mid i < |z| \rangle$ denote the increasing enumeration of z. Then set

$$j_z := \min\{j < |z|-1 \mid c(\alpha_j, \alpha_{j+1}) = \max\{c(\alpha_i, \alpha_{i+1}) \mid i < |z|-1\}\},$$

and let $d(z) := (\alpha_{j_z}, \alpha_{|z|}).$

Lemma (General technique)

Assume $\text{Extract}_2(\kappa, \lambda, \omega, \omega)$ and $\kappa \not\rightarrow [\lambda, \lambda]^2_{\theta}$ hold, then $S_2(\kappa, \lambda, \theta)$ holds.

Proof of the example

Fix $c : [\kappa]^2 \to \omega$ witnessing $U(\kappa, \kappa, \omega, \omega)$. Define a coloring $d : [\kappa]^{<\omega} \to \theta$, as follows. For $z \in [\kappa]^{<2}$, just let d(z) := (0, 1). Next, for $z \in [\kappa]^{<\omega}$ of size ≥ 2 , first let $\langle \alpha_i \mid i < |z| \rangle$ denote the increasing enumeration of z. Then set

$$j_z := \min\{j < |z|-1 \mid c(\alpha_j, \alpha_{j+1}) = \max\{c(\alpha_i, \alpha_{i+1}) \mid i < |z|-1\}\},$$

and let $d(z) := (\alpha_{j_z}, \alpha_{|z|}).$

Lemma (General technique)

Assume $\text{Extract}_2(\kappa, \lambda, \omega, \omega)$ and $\kappa \not\rightarrow [\lambda, \lambda]^2_{\theta}$ hold, then $S_2(\kappa, \lambda, \theta)$ holds.

Lemma

For λ regular uncountable, if $\kappa > 2^{<\lambda}$ then $\text{Extract}_2(\kappa, \lambda, 2, 2)$ fails.

An observation

Note that actually we do not need the full strength of the relation $\kappa \nrightarrow [\lambda, \lambda]^2_{\theta}$,

An observation

Note that actually we do not need the full strength of the relation $\kappa \nrightarrow [\lambda, \lambda]^2_{\theta}$,

Definition

 $\kappa \stackrel{\text{sup}}{\rightarrow} [\lambda, \lambda]^2_{\theta}$ asserts the existence of a coloring $c : [\kappa]^2 \to \theta$ such that for all $\tau < \theta$ and disjoint $A, B \in \mathcal{P}(\kappa)$ satisfying the two:

1.
$$\operatorname{otp}(A) = \operatorname{otp}(B) = \lambda$$
,
2. $\operatorname{sup}(A) = \operatorname{sup}(B)$,
there is $(\alpha, \beta) \in [A + B]^n \setminus ([A]^n + [B]^n)$ with $c(\alpha, \beta)$

there is $(\alpha, \beta) \in [A \cup B]^n \setminus ([A]^n \cup [B]^n)$ with $c(\alpha, \beta) = \tau$.

In case $\kappa = \lambda$ the two relations are equivalent and by similar argument as the example before $\text{Extract}_2(\kappa, \kappa, \omega, \omega)$ holds.

Lemma

Suppose that $\kappa \nleftrightarrow [\kappa; \kappa]^2_{\theta}$ holds for a regular uncountable κ and an infinite $\theta \leq \kappa$. Then $S_2(\kappa, \kappa, \theta)$ holds, as well.

In case $\kappa = \lambda$ the two relations are equivalent and by similar argument as the example before $\text{Extract}_2(\kappa, \kappa, \omega, \omega)$ holds.

Lemma

Suppose that $\kappa \nleftrightarrow [\kappa; \kappa]^2_{\theta}$ holds for a regular uncountable κ and an infinite $\theta \leq \kappa$. Then $S_2(\kappa, \kappa, \theta)$ holds, as well.

Question

What can be said on $S_2(\kappa, \lambda, \theta)$ when $\lambda < \kappa$?

Theorem

If there exists a weak μ -Kurepa tree with κ branches, then $S_2(\kappa, \lambda, 2)$ holds, for $\lambda := \mu^+$.

Theorem

If there exists a weak μ -Kurepa tree with κ branches, then $S_2(\kappa, \lambda, 2)$ holds, for $\lambda := \mu^+$.

The existence of weak $\mu\text{-}\mathsf{Kurepa}$ tree with κ branches gives us:

- Extract₂($\kappa, \lambda, \mu, \omega$) for every regular cardinal $\lambda \in (\mu, \kappa]$;
- ▶ a coloring witnessing $\kappa \stackrel{\text{sup}}{\nrightarrow} [\lambda, \lambda]_2^2$.

Theorem

If there exists a weak μ -Kurepa tree with κ branches, then $S_2(\kappa, \lambda, 2)$ holds, for $\lambda := \mu^+$.

The existence of weak μ -Kurepa tree with κ branches gives us:

- Extract₂($\kappa, \lambda, \mu, \omega$) for every regular cardinal $\lambda \in (\mu, \kappa]$;
- ▶ a coloring witnessing $\kappa \stackrel{\text{sup}}{\nrightarrow} [\lambda, \lambda]_2^2$.

Corollary

For every infinite cardinal $\lambda = 2^{<\lambda}$, $S_2(2^{\lambda}, \lambda^+, 2)$ holds.

Corollary (Komjáth, 2016) $\mathbb{R} \rightarrow [\omega_1]_2^{\mathsf{FS}_n}$ for any $n < \omega$;

Theorem

If there exists a weak μ -Kurepa tree with κ branches, then $S_2(\kappa, \lambda, 2)$ holds, for $\lambda := \mu^+$.

The existence of weak μ -Kurepa tree with κ branches gives us:

- Extract₂($\kappa, \lambda, \mu, \omega$) for every regular cardinal $\lambda \in (\mu, \kappa]$;
- ▶ a coloring witnessing $\kappa \stackrel{\text{sup}}{\nrightarrow} [\lambda, \lambda]_2^2$.

Corollary

For every infinite cardinal $\lambda = 2^{<\lambda}$, $S_2(2^{\lambda}, \lambda^+, 2)$ holds.

Corollary (Komjáth, 2016) $\mathbb{R} \rightarrow [\omega_1]_2^{\mathsf{FS}_n}$ for any $n < \omega$;

Corollary (Komjáth, 2020)

There exists $c : \mathbb{R} \to 2$ such that, for every i < 2 and $X \subseteq \mathbb{R}$ of size \aleph_1 , there exist $x \neq y \in X$ with c(|x - y|) = i.

Additive Ramsey Theory

The S-principle

More colors, higher dimensions

This section is dedicated to give a brief overview of the tools we used to prove the main result.

As before

Lemma

Suppose that there exists a weak μ -Kurepa tree with at least κ many branches. Then $\text{Extract}_3(\kappa, \lambda, \mu, \omega)$ for every regular cardinal $\lambda \in (\mu, \kappa]$.

As before

Lemma

Suppose that there exists a weak μ -Kurepa tree with at least κ many branches. Then $\text{Extract}_3(\kappa, \lambda, \mu, \omega)$ for every regular cardinal $\lambda \in (\mu, \kappa]$.

But what about the appropriate coloring?

The coloring

Definition

 $\kappa \stackrel{\text{sup}}{\nrightarrow} [\lambda, \lambda]_{\theta}^{n}$ asserts the existence of a coloring $c : [\kappa]^{n} \to \theta$ such that for all $\tau < \theta$ and disjoint $A, B \in \mathcal{P}(\kappa)$ satisfying the two:

1.
$$\operatorname{otp}(A) = \operatorname{otp}(B) = \lambda$$
,
2. $\operatorname{sup}(A) = \operatorname{sup}(B)$,
there is $\vec{x} \in [A \cup B]^n \setminus ([A]^n \cup [B]^n)$ with $c(\vec{x}) = \tau$.

Lemma

Suppose that:

►
$$2 \le n < \omega$$
;

θ ≤ λ ≤ κ are cardinals with λ regular and uncountable;
 κ ^{sup} → [λ, λ]ⁿ_θ;

• Extract_n(
$$\kappa, \lambda, \omega, \omega$$
) holds.

Then $S_n(\kappa, \lambda, \theta)$ holds.

The coloring: maximal number of colors

Theorem

The following are equivalent:

- 1. $(\aleph_2, \aleph_1) \twoheadrightarrow (\aleph_1, \aleph_0)$ fails;
- There exist a coloring c : [ω₂]³ → ω₁ with the property that for all disjoint A, B ⊆ ω₂ of order-type ω₁ such that sup(A) = sup(B), for every color τ < ω₁, there is (α, β, γ) ∈ [A ∪ B]³ \ ([A]³ ∪ [B]³) such that c(α, β, γ) = τ. i.e. ω₂ ^{sup} → [ω₁, ω₁]³<sub>ω₁</sup>
 </sub>

Theorem Suppose that $\lambda = \mu^+$ for an infinite cardinal $\mu = \mu^{<\mu}$. Then $\lambda^+ \stackrel{\text{sup}}{\rightarrow} [\lambda, \lambda]^3_{\omega}$.

We use a technique introduced by Todorčević, called walks on ordinals.

- We use a technique introduced by Todorčević, called walks on ordinals.
- ▶ We divide into two cases depending on whenever $2^{\mu} = \mu^+$ or not.
- ► Each such case, similarly to the division into cases in Todorčević celebrated theorem ω₂ → [ω₁]³_ω, we divide into two major cases.

- We use a technique introduced by Todorčević, called walks on ordinals.
- \blacktriangleright We divide into two cases depending on whenever $2^{\mu}=\mu^+$ or not.
- ► Each such case, similarly to the division into cases in Todorčević celebrated theorem $\omega_2 \nleftrightarrow [\omega_1]^3_{\omega}$, we divide into two major cases.
- In the first case, we get a similar situation as in the maximal color case. i.e. Chang's conjecture fails.

- We use a technique introduced by Todorčević, called walks on ordinals.
- \blacktriangleright We divide into two cases depending on whenever $2^{\mu}=\mu^+$ or not.
- ► Each such case, similarly to the division into cases in Todorčević celebrated theorem $\omega_2 \nleftrightarrow [\omega_1]^3_{\omega}$, we divide into two major cases.
- In the first case, we get a similar situation as in the maximal color case. i.e. Chang's conjecture fails.
- ▶ In the other case, we use a lifting up of the oscillation map.

Some open questions regarding the Extract

Question

Does Extract₂($\kappa, \lambda, ...$) imply Extract₃($\kappa, \lambda, ...$)?

Some open questions regarding the Extract

Question

Does Extract₂($\kappa, \lambda, ...$) imply Extract₃($\kappa, \lambda, ...$)?

Recall, $\text{Extract}_2(\aleph_2, \aleph_1, \aleph_0, \aleph_0)$ holds iff CH fails.

Question

Is there a model of ZFC such that, $Extract_3(\kappa, \lambda, \omega, \omega)$ holds but $Extract_2(\kappa, \lambda, \omega, \omega)$ fails?

Some open questions regarding the Extract

Question

Does Extract₂($\kappa, \lambda, ...$) imply Extract₃($\kappa, \lambda, ...$)?

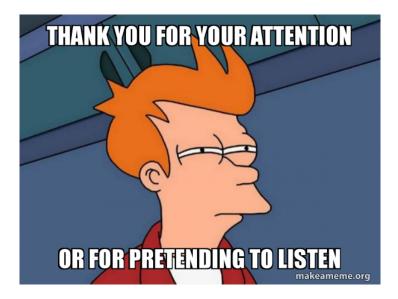
Recall, $Extract_2(\aleph_2, \aleph_1, \aleph_0, \aleph_0)$ holds iff CH fails.

Question

Is there a model of ZFC such that, $Extract_3(\kappa, \lambda, \omega, \omega)$ holds but $Extract_2(\kappa, \lambda, \omega, \omega)$ fails?

Question

Is $U(\kappa, \lambda, ...)$ imply $Extract_2(\kappa, \lambda, ...)$?



The paper is available in: http://p.assafrinot.com/57

Questions?